Functional and Structural Dissection of the SWI/SNF Chromatin Remodeling Complex: A Dissertation

نویسنده

  • Xiaofang Yang
چکیده

The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent chromatin remodeling complexes. It consists of eleven stoichiometric subunits including Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic subunit of SWI/SNF, is evolutionally conserved from yeast to human cells. Genetic evidence suggests that SWI/SNF is required for the transcriptional regulation of a subset of genes, especially inducible genes. SWI/SNF can be recruited to target promotors by gene specific activators, and in some cases, SWI/SNF facilitates activator binding. Biochemical studies have demonstrated that purified SWI/SNF complex can hydrolyze ATP, and it can use the energy from ATP hydrolysis to generate superhelical torsion, mobilize mononucleosomes, enhance the accessibility of endonucleases to nucleosomal DNA, displace H2A/H2B dimers, induce dinucleosome and altosome formation, or evict nucleosomes. A human homolog of Swi2p/Snf2p, BRG1, is the catalytic subunit of the human SWI/SNF complex. Interestingly, isolated BRG1 alone is able to remodel a mononucleosome substrate. Importantly, mutations in mammalian SWI/SNF core subunits are implicated in tumorigenesis. Therefore, it remains interesting to characterize the role(s) of each subunit for SWI/SNF function. In this thesis project, I dissected SWI/SNF chromatin remodeling function by investigating the role of the SANT domain of the Swi3p subunit. Swi3p is one of the core components of SWI/SNF complex, and it contains an uncharacterized SANT domain that has been found in many chromatin regulatory proteins. Earlier studies suggested that the SANT domain of Ada2p

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and Structural Analysis of the Yeast SWI/SNF Complex: a Dissertation

Modulating chromatin strcture is an important step in maintaning control over the eukarotic genome. SWISNF, one of the complexes belonging to the growing famly of ATP-dependent chromatin remodeling enzymes, is involved in controllng the expression of a number of inducible genes whose proper regulation is vita for metabolism and progression though mitosis. The mechanism by which SWISNF modulates...

متن کامل

SWI/SNF Infobase—An exclusive information portal for SWI/SNF remodeling complex subunits

Chromatin remodeling complexes facilitate the access of condensed genomic DNA during transcription, replication, and repair, by altering the histone-DNA contacts in the nucleosome structures. SWI/SNF (SWItch/Sucrose Non-Fermentable) family of ATP dependent chromatin remodeling complexes have been documented for their tumour suppressor function. Recent studies have reported the high frequency of...

متن کامل

Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer.

There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10 to 12 unique subunits. Altho...

متن کامل

Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes

Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemicall...

متن کامل

Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex.

ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015